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Abstract. Spamming refers to the process of providing unwanted and
irrelevant information to the users. It is a widespread phenomenon that
is often noticed in e-mails, instant messages, blogs and forums. In our
paper, we consider the problem of spamming in blogs. In blogs, spammers
usually target commenting systems which are provided by the authors
to facilitate interaction with the readers. Unfortunately, spammers abuse
these commenting systems by posting irrelevant and unsolicited content
in the form of spam comments. Thus, we propose a novel methodology to
classify comments into spam and non-spam using previously-undescribed
features including certain blog post-comment relationships. Experiments
conducted using our methodology produced a spam detection accuracy
of 94.82% with a precision of 96.50% and a recall of 95.80%.
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1 Introduction

Over the past decade, blogs have gained immense popularity in the Internet. A
blog or weblog is an online journal or diary that usually allows interactions be-
tween the author and the readers through comments. According to WordPress[1],
a blog publishing platform, their users alone produce an average of 500,000 new
posts and 400,000 new comments everyday. Unfortunately, with such huge vol-
umes of traffic in a largely unmoderated space, blogs have become a target
for spammers. Spammers have expanded from spamming traditional e-mail and
messaging systems to social networks, blogs, forums etc. Akismet[2], a plug-in
for comment and trackback spam detection, has detected over 25 billion spams
over the past four years in Wordpress blogs. Thus, with such high levels of spam
in blogs, it is imperative that we constantly devise newer strategies to combat
them.

The different types of spam in blogs include splogs, comment spam, trackback
spam etc[3]. In this paper, we restrict our scope to detecting comment spam
which is the most common type of blog spam. Studies indicate that 81% of blogs
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have commenting systems[4] which allow the author to interact with the readers.
A typical commenting system contains text fields for commenter’s name, home-
page url, e-mail address and a text area for typing comments. These commenting
systems are exploited unethically by spammers who post advertisements, irrele-
vant links and malware in the text area as spam comments. These comments are
generated through automated applications called bots which repetitively post
irrelevant and often malicious content as comments.

Spam e-mail detection methodologies used in detecting spam comments have
been reasonably successful[5] but cannot be viewed as a full-fledged solution to
the comment spam problem. Their fallacies may be attributed to the inherent
difference in the features of spam comments and spam e-mails. While the pur-
pose of a spam e-mail is to coax the recipient into interacting with the solicited
website, the purpose of a spam comment is to improve the search engine rankings
of the advertised website. Also, unlike spam e-mails, spam comments (as shown
in Fig. 2,3,4) are optimized according to the ranking algorithms of search en-
gines such as Google through Search Engine Optimization (SEO) techniques. For
example, the Google search engine employs its PageRanking algorithm to rank
websites based on the weighted sum of their incoming links[6]. Thus, spammers
use a SEO technique called link building[7] which involves repeatedly posting
links in blogs, forums etc., to increase the incoming links and thereby, improving
the search rankings.

Currently, blog owners and blogging platforms such as WordPress have adopt-
ed certain techniques to reduce comment spam. Some blog owners choose to man-
ually monitor and moderate comments. While this process may be effective in
removing spam completely, it is laborious and unfeasible especially if the blog
attracts a large amount of traffic. Also, some blog owners disallow multiple post-
ings of the same comments in their blogs. This approach prevents some but not
all spam comments from being posted. Another approach is to prevent comment
spam by distinguishing automated spamming bots from genuine commenters us-
ing CAPTCHAs[8]. CAPTCHAs are puzzles that usually involve recognizing let-
ters or numbers from cluttered images that are difficult for bots to automatically
identify. However, research has proved that this method is not foolproof and that
it can be broken[9]. Yet another approach is to attach a “nofollow” link attribute
to the commenting systems[10]. The “nofollow” attribute directs the search en-
gine crawlers not to follow the links posted in comments. Thus, these links do
not contribute to the page rank of the linked page during search queries. Unfor-
tunately, spammers continue to spam even “nofollow”-attributed commenting
systems as experiments conducted by SEO communities show that the links
posted in such commenting systems are still followed by some crawlers[11].

The rest of the paper is organized as follows. In section 2, we discuss the past
works related to comment spam. In section 3, we describe the dataset used for
the validation of our methodology. In section 4, we identify and describe features
required for our proposed methodology. In section 5, we provide a mathematical
model that combines the features extracted in section 4. In section 6, we describe
our experimental setup and the results obtained on applying our methodology.
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In section 7, we conclude and explore the scope for further research on comment
spam.

2 Related Work

Spam detection has been an active research area over the past decades with
considerable work done primarily on email spam[12][13][14]. However, specific
research on comment spam started only in 2005 and has yet to gain much
prominence.

In 2005, Mishne et al[15] used probabilistic language models to detect spam
comments. The difference in language models (calculated using a smoothed KL-
Divergence) of the blog post, its comments and the pages that were linked by
the comments were used in the spam detection process. A major drawback of
this method is that spam classification is solely based on comparing language
models. Thus, spam comments that have language models similar to that of
the blog post may pass the spam filters without detection. In 2006, Han et
al[16] proposed a collaborative filtering method for detecting spam links in blog
comments. In their method, blog owners manually identify and share spam links
through a trusted network of blogs called trustroll) to aid in spam detection.
This approach can be applied only to user-hosted blogs (eg. Wordpress) and not
developer-hosted blogs (eg. Blogger) as blog owners do not have the facility to
create custom trustrolls in developer-hosted blogs. Also in 2006, Wong et al.[17]
proposed a collaborative security system to detect spam comments. Their system
automatically identified spam comments and constructed signatures which were
distributed to a set of peers to assist in their spam detection process. In their
system, for each spam comment detected, a signature is created and stored in a
database before it is distributed to its peers in the network. This methodology is
difficult to put into practical use because the database size and the network traffic
increase with increase in spam comments. In 2007, Cormack et al[5] worked on
spam filtering for short messages such as comments by analyzing and evaluating
the available filtering systems such as Bogofilter, OSBF-Lua etc. They focused
their analysis purely on comments and did not correlate the comments with their
corresponding blog posts. In 2009, Bhattarai et al[18] performed content analysis
of spam comments to identify features such as number of word duplications, stop
words ratio etc., which were used to train classifiers for spam detection. They
obtained an accuracy of 86% in detecting spam comments using their approach.

Previous works on spam comment detection relied on methodologies using lan-
guage models, collaborative approaches and content analysis techniques. How-
ever, these approaches did not taken into extensive consideration, the meta-data
in blogs such as time of posting, name of commenters etc., and focused purely on
the text content of the blog post and its comments. To the best of our knowledge,
our methodology is the first to integrate features based on meta-data describing
both comments and their relationship with blog posts for detecting spam com-
ments. In our work, we propose a novel methodology which combines the results
from content analysis of comments and blog post-comment relationships to train
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classifiers such as Naive Bayes, Support Vector Machines (SVM) etc., to detect
spam comments. Our approach is more robust and accurate when compared to
previous works as the comments are classified not only based on their properties
but also based on their correlation with the blog posts.

3 Dataset

We use a blog corpus compiled by Mishne et al[15] for evaluating our method-
ology. This corpus contains 50 random blog posts with 1024 comments. The
number of comments per blog post range from 3 to 96 and the average length of
the comments is 41 words. The blogs and the comments are predominantly in
English (over 90%). These comments were classified by human evaluators into
spam and non-spam. The corpus contains 332 non-spam comments and 692 spam
comments (about 67%). This is a realistic representation of the percentage of
spam comments in the blogosphere and is in accordance with values obtained
from recent observations[19]. All examples featured in this paper have been ex-
tracted from this corpus.

4 Feature Selection

Spam comments have certain defining features which distinguish them from non-
spam comments. We analyzed comments and identified six such features which
can be used to train classifiers in detecting spam comments. In this process, we
used Beautiful Soup, a HTML parser library[20] and NLTK library[21] (Natural
Language Toolkit) for extracting and evaluating blog posts along with their
corresponding comments.

4.1 Features Based on Comment Analysis

The following features are based purely on the the properties of comments. Here,
we analyze the content and the meta-data related to the comments in order to
identify features that aid in the spam detection process.

Fig. 1. An example of a spam comment containing the commenter’s name
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Presence of References to Own Name. Commenting systems always pro-
vide a separate name field in which the commenter may input his/her name.
Thus, genuine commenters generally never find the need to post their names
in the comment body. However, spammers post multiple copies of keywords as
names in both the name field and the comment body of commenting systems
in order to increase the keyword density which improves search rankings[22]. In
the corpus, it is observed that 93.17% of comments referring to the commenter’s
own name are spam comments. Thus, the presence of references to own name
is used as a feature in comment spam detection. In Fig. 1, we observe such a
spam comment where “phendimetrazine” is present in both the name field and
the comment body.

Fig. 2. An example of a spam comment containing homepage links

Presence of Homepage Links. Usually, links present in non-spam comments
direct the user to a specific inner page rather than the homepage or the sub-
domain homepage of a website. This is because genuine commenters provide
topic-specific information which is available on these inner pages. On the other
hand, spammers try to increase the search rankings of their entire website by
post links directing to both the homepage and the inner pages of their website.
In the corpus, we find that 91.05% of comments containing links directing to
homepages are classified as spam. Hence, the presence of homepage links is used
to distinguish spam from non-spam comments. Figure 2 shows a part of a spam
comment containing links to homepages.

Presence of Dictionary Words in Name Field. Spammers often input
keywords in the name field and website links in the comment body of commenting
systems to improve the search ranking of their website for the inputted keywords.
These keywords are usually dictionary words such as “shopping”, “business”
etc. Using the pyEnchant programming module[23], we observe that 84.34% of
comments having dictionary words in their name field are classified as spam in
the corpus. Thus, the presence of dictionary words in name field is an effective
feature in the spam detection process. Figure 2 shows a part of a spam comment
which contains “internet pharmacy” (both dictionary words) in the name field.

4.2 Features Based on Comment-Blog Post Relationships

The following features highlight the properties that link blog posts and com-
ments. These features are especially effective in detecting spam comments as the
correlation between blog posts and spam comments are generally very weak.
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Fig. 3. Graph shows the distribution
of spam comments with respect to the
time interval between blog and com-
ment posting

Fig. 4. Graph shows the distribution
of non-spam comments with respect
to the time interval between blog and
comment posting

Time Interval between the Dates of Blog Posting and Comment
Posting. As content in blogs is chronologically ordered, we can analyze the
time interval between the dates of blog posting and comment posting. It is ob-
served that as this time interval increases, the possibility of a comment being
spam also increases. This measure is quite intuitive, for example, if a comment is
posted, say, two years after the blog post was posted, the comment is most likely
to be spam. We plotted two graphs (Fig. 3 and Fig. 4) showing the distribution
of spam and non-spam comments in the corpus based on time interval. In both
graphs (Fig. 3 and Fig. 4), “Interval Days” refers to the time interval between
the dates of blog posting and comment posting (in days) and “Comment Id”
refers to a unique number identifying each comment in the corpus. We observe
that most non-spam comments are posted close to the blog post publishing date
whereas spam comments have a wider distribution. This difference may be used
in the distinguishing spam and non-spam comments and thus, time interval be-
tween the dates of blog posting and comment posting is a valuable feature which
can be utilized in spam detection.

Presence of References to Blog Post Author. The “Comments” section
in blogs serves as a discussion platform for commenters and blog post authors.
The comments are usually directed at the author or at other commenters by

Fig. 5. An example of a spam comment containing another commenter’s name
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usually referring to their names. In the corpus, it is observed that 91.67% of
comments containing references to authors are non-spam comments. Hence, the
presence of references to blog post authors is a useful feature to differentiate
spam and non-spam comments. However, the presence of references to other
commenters is not used as a differentiating feature because such references can be
forged by posting multiple comments, with atleast one comment containing the
other commenter’s name. For example, in Fig. 5, the first comment is authored
by “Spyware Stormer” and the following comment contains “Spyware”, which
is incidentally the first name of the previous commenter. Thus, an algorithm
using the presence of references to other commenters as a feature would wrongly
classify the two comments as non-spam.

Fig. 6. Graph shows the distribution of
spam comments with respect to skew di-
vergence

Fig. 7. Graph shows the distribution
of non-spam comments with respect to
skew divergence

Skew Divergence. As spam comments differ greatly in the language used when
compared to their corresponding blog post, we compare the language model of
the comment with that of the blog post. A language model is a probability dis-
tribution over the word sequences present in the text. In our approach, we calcu-
late the language model of the blog post and the blog comments using maximum
likelihood estimations and then the skew divergence[24], which is the difference
between the two models, is calculated.The skew divergence is asymmetric and
is a modification of the Kullback-Leibler divergence (KL-Divergence). The skew
divergence Sα between two language models l1 and l2,is given by:

Sα(l1 || l2) = KL(l2 || αl1 + (1 − α)l2) (1)

where
KL(l1 || l2) =

∑

y

l1(y)(log l1(y)− log l2(y)) (2)

Here, KL(l1 || l2) is the KL-divergence of language models l1 and l2, y represents
each word in l1 and α is the skew divergence constant. It can be seen that
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the skew divergence is a KL-divergence with l1 smoothed using l2 according to
α. It has been observed and proved by Lee et al[24] that higher values of α
tends to produce better results. Thus, we choose α=0.99 for our calculations.
As skew divergence is asymmetric, we calculate both S(lpost || lcomment) and
S(lcomment || lpost) and find their mean S as follows:

S =
S0.99(lpost || lcomment) + S0.99(lcomment || lpost)

2
(3)

S is normalized and plotted in two graphs (Fig. 6 and Fig. 7) which shows the
distribution of the spam and non-spam comments based on their normalized
mean skew divergence. In the two graphs (Fig. 6 and Fig. 7), “Skew Divergence”
refers to the divergence values and “Comment Id” is a unique number identifying
each comment in the corpus. From the graphs, we observe that most spam com-
ments have a higher skew divergence when compared to non-spam comments.
This observation concurs with our intuitive understanding that language models
of spam comments differ greatly from that of blog posts. Hence, the difference in
skew divergence values of spam and non-spam comments aids in detecting spam
comments.

5 Combining Features

The features described in section 4 perform poorly in the spam detection pro-
cess when taken into consideration individually, but when these features are
combined to train a classifier, they perform comment spam detection accurately.
Before calculating and combining feature values, appropriate preprocessing is
performed on all the blog posts and comments in the dataset. Preprocessing
includes stemming, removing stop words, punctuation etc., which improve the
overall accuracy of our process. After preprocessing, values for all the features
are calculated and are used to represent the comments.

Our approach can be mathematically defined as follows:
Let us assume that each comment instance is a point in an instance space.

All comments can be described by the six features mentioned in section 4. These
features have domains Di (i=1 to i=6) as shown in table 1.

Table 1. Domain Details

Features Domain Name Domain

Presence of references to own name D1 Boolean
Presence of homepage links D2 Boolean
Presence of dictionary words in name field D3 Boolean
Time interval between the dates of blog D4 Continuous
posting and comment posting
Presence pf references to blog post authors D5 Boolean
Skew Divergence D6 Continuous
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As shown in table 1, time interval and skew divergence are in continuous do-
main, while the other features take boolean values (true represents the presence
of that feature in the comment while false represents otherwise).

Thus, each comment instance C in the corpus can be represented as:

C = D1 ×D2 ×D3 ×D4 ×D5 ×D6 (4)

These comment instances, along with their manual classifications (spam or not
spam) are used to train learning algorithms to detect spam comments.

6 Experimental Setup and Results

The spam detection problem is essentially a binary-text classification problem
(classification into spam and non-spam). In our methodology, we train classifiers
such Nave Bayes, Support Vector Machines (SVM) etc., to obtain a model which
is then tested for accuracy. We use different classifiers in order to analyze and
evaluate the classifier that is most accurate for our classification problem.

Firstly, a dataset containing the six feature values and the manual classifica-
tion for each comment in the corpus is compiled. Then, we use a ten-fold cross
validation process[25] to test and evaluate the classifications made by the clas-
sifier. Here, the compiled data set is divided into 10 equal parts. The classifier
is trained and tested 10 times where each time, a different part of the dataset
is the testing set while the remaining parts are combined to form the training
set. This process helps avoid the possibility of overfitting[26] and gives an accu-
rate estimation of the accuracy of our classifier. The accuracy of the classifier
is determined to be the total number of correct classifications divided by the
total number of classifications made by the classifier. The results for different
classifiers are shown in table 2:

Table 2. Results

Classifying algorithms Accuracy Precision Recall

Naive Bayes Classifier 94.04% 95.92% 95.23%
Support Vector Machines (SVM) 92.57% 91.62% 97.97%
Logistic Regression 92.96% 94.92% 94.65%
Decision Trees (C4.5) 94.82% 96.50% 95.80%

From table 2, we observe that all learning algorithms perform very well with
the extracted features values. We observe that SVM has the highest recall value
but its precision and accuracy is less than that of some of the other classifying
algorithms. Decision trees give the highest overall accuracy of 94.82% along with
a precision of 96.50% and a recall of 95.80%. The accuracy obtained is 8.82%
higher than the accuracy obtained by Bhattarai et al.[18] Also, the accuracy
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obtained is much higher when compared to the 83% accuracy obtained by Mishne
et al.[15] using the same spam corpus. Since, the relative cost of misclassifying
a legitimate comment as spam is very high when compared to misclassifying a
spam comment as legitimate, our focus has been to obtain a high precision in
our system. Thus, with a precision of 96.50% obtained using decision trees, we
believe that we have devised an excellent spam detection methodology with very
high precision.

7 Conclusion and Future Work

From our results, we observe that the spam detection accuracy is vastly improved
if both comment analysis and blog post-comment relationships are considered
during the spam detection process. In our approach, spam comments need to
closely mimic non-spam comments not only in their own properties but also in
their relationships with the blog posts in order to deceive the classifier. Thus, our
approach disencourages spammers by making spamming more computationally
expensive as spammers would need to post comments customized according to
the blog post content. Also, we believe that our methodology is relatively lan-
guage independent as most of the features mentioned in section 4 are not lan-
guage dependent (such as date of comment posting, author’s and commenter’s
names etc.).But, as the size of the corpus is small, we consider our results as a
proof-of-concept and a base for further experimentation. In the future, we look
to improve and expand the blog spam corpus. Also, we wish to include more fea-
tures (such as those chosen by Bhattarai et al[18] and test the level of language
independence of our methodology. We would also like to incorporate a collab-
orative spam detection module for better efficiency. Another possible extension
of our work would be to use WordNet[27] to identify similar words present in
comments and blog posts.
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